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Detecting Failures in HPC Storage Nodes 
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Abstract— Future High-Performance Computing (HPC) systems are expected to include more  components 
than current HPC systems. This increase in components, decreases the reliability of the system. Recovering 
from failure is one of the hardest problem in future HPC. In this research, storage node failures will be 
considered, as they are the least reliable hardware components due to their mechanical aspects. Ensemble 
Learning was proposed as a prediction algorithm to predict the failure in these nodes. According to our 
evaluation, acceptable prediction could be obtained with sufficient lead time window.         
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1    Introduction  
uture High-Performance Computing (HPC) 

systems will need concurrent use and control of 
hundreds of thousands of processing, storage, and 
networking nodes. With this large number of 

elements, failures will no longer be rare event, it will 
become a normal event [1]. The success of future HPC will 
depend on the ability to provide high Reliability, 
Availability and Serviceability (RSA). 

Reliability can be defined as the probability that a 
system will produce correct outputs up to some given time 
t [2]. Reliability is enhanced by avoiding, detecting and 
repairing faults. A reliable system does not silently 
continue and deliver results that include uncorrected 
corrupted data. Instead, it detects and, if possible, corrects 
the corruption. Reliability can be characterized in terms of 
Mean Time Between Failures (MTBF) [2]. 

Availability represents the amount of time a device is 
actually operating. It is given as a percentage of total time 
it should be operating. Availability features allow the 
system to stay operational even when faults do occur. 

Serviceability is the speed with which a system can be 
repaired or maintained. If the time to repair a failed system 
increases, then availability will decrease. Serviceability 
includes various methods which easily diagnose the 
system when problems arise. Early detection of faults can 
decrease or avoid system downtime. Thus detection and 
prediction methods are very useful for increasing RSA.  
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Analyzing current HPC, using Top500 HPC systems[3], it 
is clear that the number of HPC components are steadily 
increasing. On the other hand, the overall system MTBF is 
reduced to just a few hours [4]. For example, the IBM Blue 
Gene/L was built with 131,000 processors. If the MTBF of 
each processor is 876,000 hours (100 years), a cluster of 
131,000 processors has an MTBF of 876,000/131,000 = 6.68 
hours [5]. 

In general, if we assume that in a system of m 
components, the MTBF of any component i is independent 
of all other components, the reliability R of the system will 
be: 

𝑅 =
𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑀𝑇𝐵𝐹

𝑚  
 
We can conclude that, in HPC systems if the number of 
components is increased, then the system reliability will be 
decrease. 
In this research, storage node failures will be considered. 
The reason is the potential severity of storage failures, 
which can not only cause temporary system unavailability, 
but in the worst case lead to permanent data loss. 
Moreover, disks are the least reliable hardware 
component, due to the mechanical aspects of a disk [6, 17].  
Nowadays, large scale storage systems usually deploy 
massive hard disk drives as primary data storage device. 
To provide high reliability in such systems, failure 
avoidance is done by taking a preventive action [7]. When 
a part of an application running on a node that seems 
likely to fail (which may lead to failure of the whole 
application), fault-tolerant techniques, such as replication 
and erasure code are often used.  
The main issue here is that, these techniques rely primarily 
on accurate prediction of node failures that will occur. In 
order to predict the failure of a storage node, we need 
some historical data about the health of these nodes. 

Currently, almost all hard drive manufacturers have 
implemented Self-Monitoring, Analysis and Reporting 
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Technology (SMART) [8] in their products, which monitor 
internal attributes of individual drives and raise an alarm  

if any attribute exceeds a pre-defined threshold. However,  
it has been estimated that the threshold algorithm can only 
reach a failure detection rate of 3 ~ 10% at 0.1% False 
Alarm Rate (FAR) [8]. Some statistical and machine 
learning methods have been proposed to build better 
prediction models based on the SMART attributes [9, 10, 
11, 12, and 13]. However, their failure detection rates are 
only up to 50% ~ 60% with low FARs. Thus there is a need 
for more research in order to improve the prediction 
accuracy for storage nodes in HPC.  
2    Proposed Methods 
Fault prediction algorithms help the user to get a warning 
of the faults that are going to occur in the system.  They are 
used in order to increase the migration performance. The 
main purpose of this research is to improve storage node 
failure prediction by applying Ensemble Learning as 
prediction algorithm. SMART data will be used to 
implement the predictor. 
2.1   Ensemble learning 
In this research classification trees will be used as weak 
classifiers, and will be combined using Ensemble learning 
concept.  Ensemble learning is the process by which 
multiple weak classifiers are combined to solve a 
particular computational intelligence problem [14]. In 
order to increase the accuracy, the outputs of these 
classifiers or decisions are combined using weighted or 
unweighted voting. Bagging is one of the earliest, most 
intuitive and perhaps the simplest ensemble based 
algorithms, with a surprisingly good performance [14]. 
Classification trees use a decision tree as a predictive 
model which maps observations about an item to 
conclusions about the item's target value. In these tree 
structures, leaves represent class labels and branches 
represent conjunctions of features that lead to those class 
labels. 
2.2   Used Metrics 
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considering the above illustration, the our experiment will 
be evaluated using three key metrics: 
Accuracy: This represents the percentage of correctly 
predicted drive statues (Good or failed). 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 
 

Detection Rate: This represents the percentage of failed 
drives that are predicted correctly as failed. 
 

𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 
 
False Alarm Rate (FAR): is another important metric 
which represents the fraction of good drives that are miss-
classified as failed. High FAR implies too many false-
alarmed drives and results in heavy processing cost. False 
Alarm is also called False Positive Rate (FPR) in the 
terminology of machine learning. 
 

𝐹𝐴𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁 
 
Using both Detection Rate and False Alarm Rate, Receiver 
Operating Characteristic (ROC) curve could be used to 
evaluate the results. We need to increase the Detection 
Rate and reduce the False Alarm Rate in the same time. 
Thus the optimal results should be as near as possible to 
upper left corner as we can see in Figure 1   

 
Fig.1  Optimal solution using Detection Rate  & False Alarm Rate  

Beyond the predictor performance, sometimes there is not 
enough time to take proactive actions such as migration. 
Thus Lead time window size is important as shown in 
Figure 2   

                
 

Fig.2  Observation window, Lead Time, and Prediction window for 
failure prediction  

Thus, the following three issues will be investigated:  
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 Can we increase the accuracy of storage node 
failure prediction by applying Ensemble 
Learning? 

 Can we decrease the False Alarm Rate (FAR) of 
storage node failure prediction by applying 
Ensemble Learning? 

 What is the effect of changing the size of Lead 
time window, and how far we can extend this 
size? 

3    Experiment Evaluation  
3.1   Used Datasets 
The first used dataset consists of 396 drives with the same 
model.  The sampling rate was one read per two hours. 
Each drive is labeled good or failed, with 191 drives in the 
failed class and 178 in the good class. For both drives, 
samples for the last25 days (600 hours) are kept in the 
dataset [12]. 
The second one was collected from the data center of 
Baidu Inc.[15]. There are 23,395 drives in this dataset and 
all of them are with the same model. SMART attribute 
values were sampled from each working drive at every 
hour. Each drive is labeled good or failed, with 433 drives 
in the failed class and the rest (22,962 drives) in the good 
class. For good drives, the samples in a week are kept in 
the dataset. For failed drives, samples in a longer time 
period (20 days before actual failure) are saved. Every 
attribute value has been scaled to the same interval [-1, 1] 
and their exact values withhold. The serial-number of the 
disk is replaced by a number ranging from 1 to 23,395 [7]. 
Table 1 lists the differences between the two used datasets. 
 

TABLE 1  COMPARING USED SMART DATASETS 

 
SMART 

dataset #1 
SMART dataset 

#2 

Published Year 2005 2013 

# All Drives 369 23,395 

# Good Drives 178 22,962 

# Failed Drives 191 433 

SMART attributes 
samples 

Per 2 hour for 
each disk 

Per one hour 
for each disk 

Reading period 

(Good Drives) 
600 h (25 
days) 168 h (7 days) 

Reading period 
(Failed Drives) 

600 h (25 
days) 480 h (20 days) 

SMART attributes 
count 64 14 

# All samples in 
dataset 68,411 4,006,453 

 

For the second dataset, each line in the dataset contains 14 
columns which are separated by commas. The meaning of 
each column is listed as follows: 

1) Index of the disk: representing its serial-number, 
ranging from 1 to 23,395. 

2) Class label of the disk: -1 for failed and +1 for 
good. 

3) Read Error Rate: Frequency of errors during read 
operations. 

4) Spin Up Time: Time required a spindle to spin up 
to operational speed. 

5) Normalized value of Reallocated Sectors Count: 
The number of the unused sectors. When 
encountering a read/write/check error, a device 
remaps a bad sector to a healthy one. 

6) Seek Error Rate: Frequency of the errors during 
disk head positioning. 

7) Power on Hours: The Raw value shows the actual 
powered-on time, usually in hours. 

8) Reported Uncorrectable Errors: The number of 
UNC errors, i.e. read errors which Error 
Correction Code (ECC) failed to recover. 

9) High Fly Writes: The number of write errors 
caused by the fact that a write head was outside 
normal range of height above disk platter. 

10) Temperature: Temperature monitored by a sensor 
somewhere inside the drive. 

11) Hardware ECC Recovered: The number of errors 
which were corrected using Error Correction 
Code. 

12) Normalized value of Current Pending Sector 
Count: The number of unstable sectors which are 
waiting to be re-tested and possibly remapped. 

13) Raw value of Reallocated Sectors Count: The 
number of the unused sectors. When encountering 
a read/write/check error, a device remaps a bad 
sector to a healthy one.  

14) Raw value of Current Pending Sector Count: The 
number of unstable sectors which are waiting to 
be re-tested and possibly remapped. 

3.2   Experiment setup 
In order to conduct the experiment, MATLAB R2014a 

was used as programing tool [16]. The two datasets were 
processed and imported to MATLAB. 

The first step was to prepare the data for the 
experiment, in this step a new set of the data was 
generated for different lead time window. 16 sets were 
generated for the lead window from 6h up to 96h (4days) 
with step of 6h between each set. Observation window 
was fixed to 24h during all the experiment.  This step is 
essential for studying the effect of changing the size of 
Lead time window.   

The data was divided into 10 sets in order to apply the 
cross validation as the following. The first set is used as 
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testing, while the rest sets were merged to provide the 
training data. Using this training data, ensemble learning 
of three classification trees was learned. Then for the test 
set, the true drives labels were used to evaluate the 
performance. This step (training and testing) was repeated 
10 times, one time for each set. And the whole experiment 
was repeated 10 times. Both of the Accuracy and False 
Alarm Rate metrics were calculated. And the mean values 
over all experiment were considered. Figure.2 shows the 
flowchart for the evaluation experiment. 

The previous steps were done on samples level. As it 
mentioned above that for each drive the observation 
window was fixed to 24h. This means that we have 24 
samples for each drive, thus 24 predicted values for each 
drive. In order to get the predicted statues of the drive 
voting methodology was used. If we have the majority 
predicted values as failed samples, then the predicted 
drive status will be failed and vice versa. If they are equal 
then the predicted drive status will be failed will be failed 
as a precaution.  

The flowchart of the evaluation experiment is 
illustrated in Figure 3  

 
Fig.3  Evaluation Experiment 

 

4   Results and Discussion 
Table 2 illustrates the results of predicting drive failure 

using ensemble learning. The mean accuracy rate were 
91.89% and 99.32% for dataset one and two respectively. 
The second dataset has a huge number of drives thus our 
ensemble learner was trained well to get this accuracy. The 
mean detection rate for the first dataset was 92.45% which 
is better than the mean detection rate of the second dataset 
(81.40%). That is due to the fact that the second dataset was 
unbalanced towered the good drives and the failure on 
one drive effects the detection rate since the number of 
failed drives are relatively small. The mean false alarm rate 
for the second dataset was 0. 37% which is much better 
than the mean false alarm rate of the first dataset (9.88%). 
This difference can be explained again with that fact of the 
unbalanced data of dataset one. The number of good 
drives was very high such that the model as trained well 
for it. 

TABLE 2  RATING VECTORS SAMPLE FOR 5 USERS AND 4 
CONTEXTS 

 SMART 
dataset #1 

SMART 
dataset #2 

Accuracy Rate 
(%) 

91.89±1.9318 99.32±0.0408 

Detection Rate 
(%) 

92.45±1.74 81.40±1.14 

False Alarm 
Rate (%) 

9.88±4.06 0. 37±0.408 

 

In order to study the effect of changing the lead time 
window, detection rate versus the lead time were 
calculated. Figure 4 shows this relationship for the first 
dataset. We ca see that when we increase the lead time the 
detection rate is reduced. In the same time we can see that 
the least achieved the detection rate was 89% which is 
relatively high. Figure 5 shows the effect of changing the 
lead time window for the second dataset. We can see that 
the detection rate was not affected much by the changing 
in the lead time. The least achieved the detection rate was 
79%. 

Figure 6 and Figure 7 illustrate the effect of changing 
the lead time window on the false alarm rate. For both of 
them it is clear that increasing lead time window will also 
increase the false alarm rate. We can see also that the effect 
is higher for the first dataset. 
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Fig.4  Detection rate VS. Lead time for the first dataset 

 
Fig.5  Detection rate VS. Lead time for the second dataset 

 
Fig.6  FAR VS. Lead time for the first dataset 

 
Fig.7  FAR VS. Lead time for the second dataset 

In order to compare our results with the results 
achieved in previous studies [7,15], we compare the results 
using ROC plot. As we mentioned before the optimal 
solution should have both high detection rate and low 
false alarm rare in the same time. Figure 8 shows the 
achieved results compared with previous study for the 
first dataset. We can see that our result is much higher in 
detection rate than the ones achieved using support vector 
machines (SVM). But using SVM they could achieve 0.00% 
false alarm rate with detection rate of 51%.  Figure 9 shows 
the comparison for the second dataset. We can see that our 
method outperforms SVM. But the results of Neural 
Networks are clearly better than our method.   

 
Fig.8  Comparing our results with previous studies for the first dataset 
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Figure 9 Comparing our results with previous studies for the 

Second dataset 
 

5   Conclusions and Future Work 
In this research, we have illustrates the effects of failure 

prediction of HPC storage nodes. The main aim was to 
increase the reliability of HPC. Ensemble Learning was 
used as prediction algorithm in order to predict these 
failures. Our proposed method was applied using two 
SMART datasets. The results show that acceptable 
prediction could be obtained even with lead time windows 
(up to 4 days). This widow is sufficient to perform any 
precaution actions.  

As a future work we can include the effect of changing 
the costs of learning. Using the costs could enhance the 
false alarm rate. Other direction is to use the neural 
networks in the ensemble learning model. Even though the 
learning process may take longer time, the classification of 
new samples will still very short. A third direction is to 
integrate this method (with little modification) in online 
detection system. This step may have considerable effect in 
the performance of online failure prediction of HPC. 
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